

An Inexpensive and Simple Nucleic Acid Dipstick for Rapid Pathogen Detection

Aug 22, 2006 Systems Integration in Biodefense

> Hong Cai 505-606-1633 Cai_hong@lanl.gov Bioscience Division

Requirement of Rapid Responder/Identifier (suitable for POC and field use)

- Rapid response
- Highly sensitive
- Highly specific
- Low false positive rate
- Inexpensive !
- Simple and easy to use
- Portable
- Disposable !
- Long shelf life
- Easy to scale up production !

Limitation of two current methods • Los Alamo

Antibody-based detection: e.g. dipstick assay

- Rapid response, <5 min
- easy to operate and portable
- inexpensive (<\$1)
- low sensitivity
- low specificity
- labor intensive antibody screening

Nucleic acid detection: e.g. PCR Taqman assay

- highly sensitive
- highly specific
- low false positives
- expensive due to the cost of PCR cycler(~\$30K), centrifuge
- heavy and needs power to operate
- ~40 minute response time (15-30 minute amplification, 10 minute DNA extraction)

Nucleic Acid Pathogen Dipstick Based on Isothermal Amplification and Lateral Flow Dipstick Detection

- Fast response (<30 min for DNA)
- Highly specific with low false positives (nucleic acid detection)
- Highly sensitive (*isothermal nucleic acid amplification*)
- Capable to process a larger volume of sample (~2 ml v.s. 20 μ l of PCR sample)
- Portable and simple
- Inexpensive (<\$10 price tag, due to the elimination of PCR and centrifugation)
- Easy to operate
- Multiplexed pathogen analysis (imprinting multiple strip lines)
- Optional strip reader module

Nucleic Acid-based Dipstick Assays

- 1. Extraction of nucleic acid
- 2. Isothermal amplification of pathogen sequence
- **3. Amplification product detection**

Simple Nucleic Acid Dipstick for Rapid and Specific Pathogen Detection

Nucleic Acid-based Dipstick Assays

- 1. Extraction of nucleic acid
- 2. Isothermal amplification of pathogen sequence
- 3. Amplification product detection

Conventional Antibody-based Dipstick

Typical Lateral-flow Dipstick Test Strip Design

Production of Nucleic Acid Dipstick

Figure 1. Schematic diagram of the developed sandwich-based NA lateral flow assay. Top panel: Top and side views of the assay assembly. Bottom panel: depicts detection of a target sequence. Detection of the single-stranded pathogen amplification products is achieved with two target-specific oligonucleotide probes. A: a capture probe is immobilized on a nitrocellulose membrane through UV crosslinking. C: a labeling/detecting probe is conjugated to the surface of blue microsphere. When a specific target sequence (B) is present, a sandwich complex is formed among the capture probe, target sequence, and labeling/detecting probe resulting in a visible blue spot on the membrane.

Sandwich Nucleic Acid Dipstick Membrane Assay

Detection Sensitivity of Pag gene target.

[Pag target] in nM

Dipstick Detection of Isothermal Amplification Product

20 ul of serial dilution of amplified DNA were applied to Dipsticks.

Nucleic Acid-based Dipstick Assays

1. Extraction of nucleic acid

2. Isothermal amplification of pathogen sequence

3. Amplification product detection

Exponential Amplification

chain reaction

Comparison of Isothermal Amplification Methods

Parameter/method	RCA	SPIA	EXPAR	Invader	Thermo SDA
Numbers of	2	2 or more (for	2 or more (for	2 or more	4 for exponential
primers required		exponential)	exponential)		-
Enzyme activity	Ligase+ Phi 29	RNase H +	Restriction	Cleavase (flap	Restriction
involved	polymerase	pol (rBst large	enzyme N BstNB	endouclease)	enzyme (BsoBI)
		fragment)	+ polymerase		+ polymerase
			Vent exo-		Exo ⁻ Bca
Required repeated	No. (Once,	Yes.	No. (Binding	Yes. (reporter	No. (Binding
primary primer	locked onto	(Repeated	once and	oligo repeated	once and
binding to target	target for	primer	continuous	disassociation	continuous
	continuous	cleavage &	cleavage &	& association)	nicking &
	polymerization)	binding for	Polymerization)		polymerization)
		each round)			
Probe	Ligatable and	Chimeric	3'	Oligo with flap	primer with
modifications	circular probe	RNA/DNA	phosphorylation	sequence	BsoBI
		hybrid			recognition site.
Amplification	Large fragment	~1 kb	~8-16 bases	None	~100 bases
products	>20 kb				
Extra requirement	restriction	None	N BstNB	None	dCTPaS
	enzyme		recognition site		
	digestion		on or near		
Reaction	20.1	55 (0 de -	target	(2.1	(0.1
	30 deg	55-60 deg	60 deg	63 deg	60 deg
temperature Specificity	Very good (two	Good	Good- Very	Very good	Very Good
specificity	primers +	(two primers)	good (two	(two matched	(four primers)
	ligase)	(two primers)	primers or	primers +	(tour primers)
	ligase)		three primers)	cleavase)	
Sensitivity	~1000 copy	1000 сору	<200 copy	~2000 copy	10 -1000 copies
¥	$\sim 1000 \text{ copy}$ 10 ⁹ folds >	potentially	<200 copy >10 ⁹ folds in	$\sim 2000 \text{ copy}$ 10 ⁷ folds < 1	10 - 1000 copies 10 ¹⁰ folds <15
Amplification		>10 ¹⁰ folds			
speed	1hour		less than 5	hour	minutes or 10
		in 1 hour	minutes		copies in 30
					minutes
Compatibility	No. (extra	Yes.	Yes.	No. (primer	Yes.
with rapid sensor	restriction			has to be	
	step and			around Tm	
	instability of			and repeated	
	polymerase)			hybridization)	

Real-time Amplification

Schematic Diagram of HDA (Helicase Mediated Amplification) Biohelix Inc. 2004

Dipstick Detection Limit: 30 Ba Genomic DNA Copies

Electrophoresis and dipstick detection of amplification products from genomic Ba DNA M: 100 bp DNA ladder (Promega)

Multiple Pathogen Targets Detection Using Isothermal Amplification and Sandwich Lateral Flow Dipstick Assay

Electrophoresis of HDA Products amplified from genomic DNA and dipstick detection.

M: 100 bp DNA ladder (Promega); 1: multiplex amplification product of *pag* and *cap*; 2: Negative Control; PP: Dipstick test positive control Pag; CP: Dipstick test positive control Cap; PCP: Dipstick test positive control pag+Cap. HDA P&C: Dipstick test of HAD product of lane 1. Cap and pag are capture probes for *pag* and *cap*, respectively.

For multiplexed analysis!

Detection of Ba Target from a Highly Heterogeneous Mixture

Nucleic Acid-based Dipstick Assays

1. Extraction of nucleic acid

- 2. Isothermal amplification of pathogen sequence
- **3. Amplification product detection**

Conventional Nucleic Acid Extraction Methods Require Centrifugation or Vacuum

•Alkaline Lysis: NaOH + SDS, neutralization, ethanol ppt

- Phenol and chloroform extraction for protein removal, ethanol ppt (TRIZOL)
- •Silica-based NA absorption in the presence of chaotropic salt and affinity chromatography (Qiagen)
- Combinations of above
- Combination plus Magnetic affinity-based NA extraction

Magnetic Affinity-based Nucleic Acid Extraction without Centrifugation and Organic Solvent

Flu-like Symptom-Based Influenza Diagnosis Approach

- Nucleic acid dipstick < 1 hour,
- Inexpensive, < \$10/unit
- Detect multiple flu-like bacteria and viruses including Type A, Type B, Avian H5N1 influenza viruses, SARS, Adenovirus, Parainfluenza, RSV, Rhino viruses
- Integrated immunological and nucleic acid detection in one simple dipstick platform
- Sensitivity ~100 copies of viruses

ACKNOWLEDGEMENT

LANL Cai's Team

Dr. Xiaoyun Lu Dr. Shannon Eaker Dr. Jun Chen Dr. Jennifer F. Harris Jianghong Zhou

LANL Collaborators

Dr. Jian Song, Bioinformatic Team

Dr. John Dunbar, Bioforensic Team

Dr. Tony Beugelsdijk, Chemistry Division

Dr. Torsten Staab, Engineering Division

External Collaborators

Dr. Scott Layne, UCLA Dr. Steve Young, TriCore Reference Laboratory/UNM Dr. Huiming Kong, BioHelix Inc.

Funding Support

LANL Exploratory Research Fund

